Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components

Beizhan Yan a,*, Daniel Kennedy a, Rachel L. Miller b, c, James P. Cowin d, Kyung-hwa Jung c, Matt Perzanowski b, Marco Balletta a, Federica P. Perera b, Patrick L. Kinney b, Steven N. Chilurda

a Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
b Mailman School of Public Health at Columbia University, New York, NY, USA
c Division of Pulmonary, Allergy and Critical Care, Columbia University College of Physicians and Surgeons, New York, NY, USA
d The Pacific Northwest National Laboratory, Richland, WA, USA

A R T I C L E I N F O

Article history:
Received 5 October 2010
Received in revised form 17 December 2010
Accepted 18 January 2011

Keywords:
Black carbon
Integrating sphere
Optical absorbance
Teflon filters
Source apportionment
Cohort study
Method validation

A B S T R A C T

Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM2.5 filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, $R^2 = 0.95$). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR loses sensitivity at filter loadings above 90 ng/mm². Furthermore, positive correlations ($R^2 = 0.7$) were observed between EC measured by NIOSH Method 5040 on quartz filters and BC measured in co-located Teflon filter samples collected from both heating and non-heating seasons. Overall, the validation data demonstrates the usefulness of this method to evaluate BC from archived Teflon filters while potentially providing additional component information.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Multiple acute and chronic adverse health effects occur in association with exposure to black carbon (BC). Most of the health studies related to inhalation of BC have focused on exposures to diesel exhaust particles, an important urban source of BC worldwide. Recent studies suggest that traffic-related pollutants, especially fine particulate (PM) components of particles such as BC are associated with various health outcomes, including eye, throat and bronchial irritation (USEPA, 2002), respiratory (Bell et al., 2009; USEPA, 2002) and asthma symptoms (Diaz-Sanchez et al., 1999; Patel et al., 2009; Riedl and Diaz-Sanchez, 2005; Spira-Cohen et al., 2010), lung cancer (Garshick et al., 1987, 1988; Steenland et al., 1992, 1990) and cardiovascular outcomes (Bell et al., 2009; Mills et al., 2005). Animal studies have suggested that soot particles themselves, independent from absorbed organic compounds, can be a casual agent of carcinogenesis (Heinrich et al., 1995; Mauderly et al., 1994).
BC is a generic term used to refer to particles formed naturally or anthropogenically through incomplete combustion of fossil fuels, biofuels, or biomass (e.g., grass, wood, dung). The black carbon definition has evolved with time to be seen as a continuum that represents combustion byproducts ranging from charred materials that retain structural information of the original fuel materials to highly condensed refractory soot. Different physical (particle size), chemical, thermal and/or optical approaches have been employed to separate non-combustion organic carbon and char from soot-BC. Although soot-BC is often referred to as being primarily elemental carbon in the form of graphite, it typically includes proportions of other atoms, as well as condensed or sorbed organics such as polycyclic aromatic hydrocarbons (PAHs).

There are intensive debates about the analytical methods for measuring soot-BC in both aerosols and sediments. In aerosols, common methods for the measurement of soot-BC include thermo-optical and optical methods. Thermo-optical methods have been widely used in measuring total carbon, organic carbon (OC), and element carbon (EC) on ambient quartz-filter fiber samples by heating a punch of filters in a continuous or stepwise temperature program under different gases. Carbon dioxide is produced through the oxidation of carbons species released from the filters in an oven immediately downstream from the primary oven and then reduced to methane before passing into a flame ionization detector (FID). Temperature and/or the amount of light transmitted through filters are used to split the OC from the more recalcitrant EC. In order to facilitate inter-laboratory comparison, the National Institute for Occupational Safety and Health (NIOSH) published Method 5040 (NIOSH, 1998) and since its publication, it has been widely used in environmental and health studies (Fromme et al., 2005; Seshagiri and Burton, 2003).

Optical measurement methods, which are nondestructive and inexpensive, take advantage of the strong absorption ability of BC across all wavelengths. The aethalometer, which is the most-widely-used instrument for real-time measurement of BC was introduced by Hansen et al. (1984). Because most air particles, except BC, absorb weakly in near-infrared region, the original aethalometer was designed to detect BC levels using a single wavelength around 880 nm (Hansen et al., 1984). Particles trapped within a three-dimensional quartz-paper tape can create complex scattering effects of the incident beam (Ballach et al., 2001). These scattering effects can also lead to errors in BC determination if scattered light is primarily attributed to absorption. To minimize filter matrix effects, Ballach et al. (2001) developed a technique by immersing the filter in a fluid that matches the index of refraction of the filter fibers. Because scattering is strongly affected by the difference of indices of refraction at the media interfaces, the filter scattering contribution is sharply reduced in comparison with the absorptive characteristics of the particles (Ballach et al., 2001). However, this method immerses the sample PM with oil, causing contamination and possible leaching of PM components.

In addition to BC measurement, efforts have been made for differentiating BC from other PM sources using optical absorbing techniques. A recent version of the aethalometer added the ability to measure absorbance in shorter wavelengths (370 nm) in order to determine woodsmoke emissions (Sandradewi et al., 2008). However, BC and woodsmoke emissions are not the only particles that absorbed strongly at 370 nm. Another common optical method used in health studies is the Smoke-stain Reflectometer (SSR) to quickly evaluate BC amounts collected on filters by the reflection method using a white light source and a simple detector (Kinney et al., 2000; Lena et al., 2002). This method assumes that light at any wavelength is absorbed only by BC. Prior work (Edwards et al., 1983, and reference therein) has demonstrated that SSR measurements can be a good proxy for elemental carbon concentrations in PM filters; however, the standard EXPOLIS method for using the SSR has the device directly touching the PM on the active area of the filter and measures the filter in five locations, leading to potential mass loss and/or cross contamination. To overcome contamination issues, the Columbia University group designed and successfully applied a filter holder that touches only the outer plastic ring, holding the filter in a fixed flat geometry and 2.5 mm away from the head of the SSR (Kinney et al., 2002; van Vliet and Kinney, 2007). Since the reflectance values are sensitive to the distance of the device to the filter, the Columbia group reports their values with an asterisk to indicate they are modified reflectance and absorbance values.

Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC has been implemented in several studies (Brook et al., 2010; Lawless et al., 2004; Rodes et al., 2010). This method assumes that the entire absorption of a sample is due to the absorption from two types of colored particulate matter—soot-BC and SHS, with SHS primarily having strong absorbance in lower wavelengths of the visible spectrum (yellow—brown color of cigarette smoke) while soot-BC absorbs strongly at all wavelengths. However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. In particular, the presence of non-carbonaceous light-absorbing aerosol components such as soil dust (mainly iron oxides), are reported to be able to play a significant role even in locations quite distant from desert regions (Fialho et al., 2005).

The overall research goal of this study is to extend the Lawless et al. (2004) method to be able to distinguish more components and also validate its use. Advantages of our method is that it is a rapid, nondestructive, contamination-free method for estimating BC, SHS and iron oxide exposures. For preventing matrix effects from filter materials, an integrating sphere is used with a newly designed interface between the filter and integrating sphere that minimizes light loss, increases the sensitivity and reliability while minimizing any potential contamination of the filter for subsequent analyses. The optical response of additional end-members, including several iron-containing particle sources, were characterized and incorporated into apportionment models. A novel “step-by-step zoom-in” approach for finding the best fit point was developed. This method allows for a rapid but thorough search for the best fit of the combination of various PM sources. For validating this method, we compared BC levels obtained using our multi-wavelength method for filters collected in New York City to other methods including thermo-optical method for elemental carbon and the smoke stain reflectometer for absorbance. The validation of this optical method for determination of second hand smoke levels will be reported in another article.

2. Methods

The optical device used for measuring BC and SHS levels consists of a balanced deuterium tungsten halogen light source (DH-2000-BAL), an integrating sphere (ISP-50-B-K), a lab-made filter holder, and an Ocean Optics USB4000-VIS-NIR miniature fiber-optic spectrometer. The light source was designed to supply a well-balanced spectrum from 210 to 2000 nm while the spectrometer was configured to detect from 345 to 1040 nm. The integrating sphere consists of sintered Teflon with a spherical cavity and has relatively two small holes (8 mm) as needed for entrance (light in) and exit (detector) ports. The excitation input is angled at 8° and collimates the fiber input before introduction into the sphere (Fig. 1). The output port is angled at 90° (to connect to a spectrometer). Due to the highly reflective nature of the sintered
Teflon, light is distributed evenly to all directions inside of the sphere and the majority of light loss is due theoretically to the absorption of particles on the Teflon filters at the sample port. To reduce light loss due to the black bottom of integrating sphere, a highly reflective white coat (BaSO₄) was painted to the bottom, which was then covered by a thin translucent layer (~1.5 mm) of white Teflon for preventing any potential flaking of BaSO₄ over-time (Fig. 1). The filter holder is designed to hold the filter flat by the support ring of the Teflon filter, with no physical contact of the PM on the active area of the filter, and to reflect light passing through the filter back into the integrating sphere by putting a reflective Teflon surface behind the filter. Teflon filters from different manufacturer’s lots (Pall Corporation) may have slight difference in background and absorbance tendency; for minimizing this effect, blank filters from the same manufacturer’s lot number are used as white reference.

2.1. The collection of end-member standards

Kerosene soot and side-stream cigarette smoke were collected onto filters as pure component standards of BC and SHS, respectively. All component standards were collected on pre-weighed 37 mm Teflon filters (Pall, R2PJ037, 2.0 μm pore size) at 1.5 LPM using BG1 triplex cyclones with a PM₂.₅ cut point. A combustion chamber (24 in × 24 in × 36 in) was designed to produce and capture combustion emissions from either a lamp oil burner or side-stream smoke from cigarettes (Marlboro Lights®) with certain dilutions controlled by fluxes of the filtered air introduced into the chamber. For simulating a natural smoking situation, a handpump was used to generate a mainstream puff with a duration of 2–3 s and a puff interval of 40–60 s, similar to conditions suggested by International Organization for Standardization standard ISO 3308 (ISO, 1999). Burning time, dilution ratios, and collection time were adjusted to obtain appropriate range of mass loadings onto filters. The color on collected filters (BC black and SHS-yellow) also may be used to approximate the relatively mass loadings on filters, ensuring a wide range of mass loadings on each set of filters achieved. Collected samples were post-weighted after being aired in the HEPA filtered, temperature/humidity controlled weighing chamber (72 ± 2 °F; 40 ± 2% relative humidity) for at least 24 h. For the SHS filters, filters were allowed to equilibrate for at least one week to allow the degassing of most volatile materials. Goethite (FeO(OH)), hematite (Fe₂O₃), magnetite (FeO·Fe₂O₃), and ammonium sulfate ((NH₄)₂SO₄) were suspended in plastic chambers using filtered compressed air and their fine particles were collected onto 37 mm Teflon filters using cyclones with a PM₂.₅ cut point. Iron/sulfur-containing minerals are often the major components of aerosol particles and generally represent more than 50% of total PM₂.₅ mass in Eastern US (Kinney et al., 2005).

2.2. Apportionment model for colored components

Optical density (negative natural logarithm of the transmissivity) between 350 and 1000 nm was calculated and curves were fit to the resulting plots of filter loading (ng/mm²) vs. optical density to be able to predict optical density for any loading of selected components following the method of Lawless et al. (2004). Then an optimization algorithm was established to determine a filter’s mass apportionment between different components. The data processing was automated in Matlab, utilizing an optimization algorithm to determine a filter’s mass apportionment. The program compares the optical data from the filter to that of the various possible mass apportionment scenarios and reports the best fit. For a given mass apportionment scenario (such as BC = 50 ng/mm² and ETS = 100 ng/mm²), the program sums the OD-contribution for each of the components to arrive at a set of predicted OD-values, one for each user-specified wavelength. Such that for the ith user-specified wavelength, λᵢ, (of n total user-specified wavelengths):

$$\text{OD}_{\text{pred}}(\lambda_i) = \text{OD}_{\text{BC}}(\lambda_i) + \text{OD}_{\text{ETS}}(\lambda_i)$$

where the end-member contributions are computed from the aforementioned fitting curves. The optimization is based on a sum-of-squares parameter, SS, which compares each set of predicted OD-values to the values extracted from the filter’s OD-curve at the same wavelengths.

$$\text{SS} = \sum_{i=1}^{n} \left(\text{OD}_{\text{meas}}(\lambda_i) - \text{OD}_{\text{pred}}(\lambda_i) \right)^2$$

When developing the algorithm it was necessary to choose an effective method for proceeding through the field of possible component mass combinations to minimize calculations and find the optimum apportionment. When utilizing a non-linear least squares method, it was found that in many instances, local minima could lead to the reporting of false, non-global minima. To avoid this, an adjusted full-field approach was developed.

The drawback to a full-field approach is that with added components, the apportionment becomes computationally intensive. The field expansion (Fig. 2) limits the number of points evaluated, while still achieving the desired field resolution. The program first scans the field at a coarse resolution and then selects the subfields that are lower than the median of sum-of-squares for further expansion around these selected points. This expansion is repeated twice to obtain high resolution evaluations. Each component represents a dimension in the mass field, such that beyond two components, the field becomes challenging to visualize. We compared the full-field approach with this adjusted zoom-in method for more than 20 cases and found that the zoom-in approach quickly located the global minima point, validating the effectiveness of this method.

The number and values of wavelengths chosen to represent the optical signatures of the component standards in the data...
2.3. Archived filters from an NYC cohort study

In the Columbia Center for Children’s Environmental Health (CCCEH) cohort, indoor and/or outdoor PM$_{2.5}$ samples are collected over a two week period in a flow rate of 1.5 LPM, with a repeat measurement occurring 6 months later to assess seasonal variations (Jung et al., 2010a, 2010b). The CCCEH cohort is recruited from low-income neighborhoods of Northern Manhattan and the South Bronx, as previously reported (Perera et al., 2003).

2.4. Comparison measurements

Smoke stain reflectometer (model 43D, Diffusion Systems Ltd., London, UK) readings are made with a custom filter holder so as to avoid contamination of the filter as reported in Kinney et al. (2002). Because the reflectance measurement is sensitive to the distance between the reflectometer head and the filter (which is an additional 2.5 mm with our filter holder), we report our reflectance measurements as “modified” reflectance (R^*) to help distinguish our measurements from those of others. To focus on the mass loading of soot on the filter instead of the air concentrations (the latter reported as absorbance units), we report the natural log of the ratio of a blank Teflon filter reflectance to the sample filter reflectance or LN (R^*_o/R^*).

Elemental carbon (EC) of co-located quartz filters were measured by Sunset Laboratory using the Method 5040 (NIOSH, 1998) and EC levels was compared with those determined by the multi-wavelength optical method. Method 5040 proceeds in following stages: evolving organic and carbonate (if present) carbon in a non-oxidizing atmosphere (He) by the 4 temperature ramp about 870 °C; cooling to 550 °C and introducing 10% oxygen in He, then bringing the sample to a temperature of 910 °C. The whole program runs about 14 min. Comparisons were also made to co-located Aethalometer readings collected every 5 min and then averaged over 24 h. Aethalometer was operated at 4/LPM flow rate with a BGI KTl cyclone with a PM2.5 cut. The aethalometer was run with the maximum attenuation set to 35%, i.e.,
filter will proceed to a new tape location if the light attenuation is more than 35%.

3. Results and discussion

3.1. Improved performance in optical measurement

Fig. 3A and B show variations of optical density with mass loadings (ng/mm²) before and after modification of the integrating sphere and sample holder. The primary modifications were decreasing the amount of light lost from the integrating sphere system at the interface with the filter holder while not allowing any physical contact with the active area of the filter (particle side). Key modifications were increasing the reflection of light that had passed through the filter back into the integrating sphere by placing a better reflector (white Teflon) directly behind the filter and painting the bottom of the integrating sphere case with a diffusive white reflectance coating (Labsphere, WRC-6080). To keep the coating from flaking over time the painted bottom was encased in a thin translucent layer of white Teflon (see Fig. 1). Decreasing the overall thickness of the filter holder also made minor improvements. Overall improvement to the filter-holder-integrating sphere system, resulted in the data for both filters of kerosene soot (data not shown) and filters of SHS fitting smooth curves better, as well as drove the x-intercept from positive values to zero. Optical density values of just SHS filters at 940 nm increase from negative values before modification to around zero after modification. This finding suggests little to no absorbance at the near-infrared wavelength and in this IR region, absorbance mainly is derived from BC rather than from SHS. In addition, the modifications increase the sensitivity of the 587 and 660 nm curves.

The positive x-intercept of calibration curves for filters of pure kerosene soot or SHS observed by Lawless et al. (2004) were explained as being due to non-absorbing mass components on the filters. Our experience above where each modification to reduce light losses made the x-intercepts march towards zero indicate that the positive x-intercepts of the calibration curves obtained in Lawless et al., 2004 system are probably due to minor light losses from their filter holder-integrating sphere system. The zero intercept obtained with our system simplifies the curve fitting to the following equation:

$$OD = A \sinh^{-1}\left(\frac{m}{B}\right)$$

This plausible simplification helps reduce the number of parameters considered in the apportionment model and reduces the computation time.

3.2. Optimized wavelengths

Having established the fitting curves for additional end-members, spectra derived from linear combinations of mixtures of either BC and SHS spectra (two component model) or mixtures of BC, SHS, goethite and hematite spectra (4 component model) were used to optimize the number of wavelengths needed to deconvolve precisely each component. We directly compared the original four wavelengths chosen by Lawless et al., 2004 to another set of four wavelengths (400, 475, 550, and 850) in which 3 wavelengths are below 600 nm, as well as to a set of ten wavelengths and a set of twenty wavelengths. When limiting the analysis to two components (i.e., BC and SHS), comparable errors were observed across all wavelength settings (Fig. 4). The deconvolution experiments with synthetic data that include 4 components (i.e., BC, SHS, goethite, and hematite) show that the wavelengths that Lawless et al., 2004 chose for determining two components result in significant average percentage errors in SHS and goethite determinations when expanding to 4 components (1.2% error for two component model.
concentrations of iron associated with maximum ambient iron levels in PM2.5 can be distinguished by this optical method. For example, as in NYC, iron levels in air result in environments (Chillrud et al., 2005; Fialho et al., 2005). Airborne concentrations include underground subway stations or desert lengths). In some environments, iron oxide levels can be much below the iron oxide LODs above and would result in OD of less.

Estimated limit of detections by this optical method, calculated as three times of the standard deviation of the lowest pure component standard, vary substantially from component to component: SHS (0.7 ng/mm²), BC (1.4 ng/mm²), hematite (43.8 ng/mm²), goethite (48.6 ng/mm²). In most urban environments, such as in NYC, iron levels in air result in filter loadings much lower than can be distinguished by this optical method. For example, maximum ambient iron levels in PM2.5 filters observed in NYC over 48 h in 1999 (270 ng/m³) are equivalent to iron oxide loadings of 6–16 ng/mm², depending on the oxide. Such a loading is well below the iron oxide LODs above and would result in OD of less than 0.1 units at 400 nm (with even lower OD at higher wavelengths). In some environments, iron oxide levels can be much higher and then the optical method can be used to determine estimated iron loadings; example environments with high iron concentrations include underground subway stations or desert environments (Chillrud et al., 2005; Fialho et al., 2005). Airborne concentrations of iron associated with fine particulate matter were observed to be more than 100 times greater in the subway environment than in home indoor or outdoor settings in NYC, most likely due to the abrasion between subway wheels and track. Of important note for the subway environment, the optical signature of the iron oxide magnetite (black in color) mixed together with some SHS can be a confounder for BC analysis (Supporting information Fig. S2). As noted above, the very high sensitivity of the multi-wavelength method to BC mass loadings relative to the poor sensitivity of this method to the iron oxide mass loadings (Supporting information Fig. S1) makes this potential confounder of negligible importance, except in special microenvironments like subways. Due to the relative ubiquity of BC over magnetite, magnetite was not included in the apportionment experiments reported here. In such environments, it would be useful to use XRF measurements for Fe to identify maximum iron oxide loadings as an additional constraint to the optical model.

3.3. Reproducibility of BC measurements

Replicate BC measurements on single filter on the same day and across multiple days suggest a reproducibility of 3% (RSD for n = 10). In comparison, Fig. 6 shows the results of soot-BC determined for 48 sets of co-located duplicate PM2.5 filters collected (indoors and outdoors) over two week time periods (CCCHE cohort). The BC concentrations ranged from 0.8 to 5.3 µg/m³ and fall on or near the 1:1 line. For 47 out of 48 of the sets, the average % difference value is near zero, with the individual percent difference values spread evenly between −15% and +15%; one filter set displayed a 46% difference. The frequency distribution of the absolute difference between co-located duplicate filters shows that among the 48 pairs, 41 (85%) of the duplicates were within 0.2 µg/m³ of the original filter, 7 of the duplicates (15%) were within 0.2–0.6 µg/m³.

3.4. BC vs. aethalometer, smoke stain reflectometer (SSR), and EC data

Excellent agreement (R² = 0.99) was obtained when triplicate PM2.5 filters were collected over twelve 24 h periods at a single site in northern Manhattan and compared to BC data obtained by averaging 5 min measurements made by a Magee Aethalometer® for the same 24-hr time periods (Fig. 7).

Fig. 8 displays the comparison between the SSR and the multi-wavelength BC, with both results being presented in units that reflect mass loading of soot on the filters which is what the measurement actually responds to. The SSR results are represented

![Fig. 5. Mathematical errors compared for different wavelength sets for the model that includes 4 colored components (BC/SHS/Goethite/Hematite).](image)

![Fig. 6. Results from co-located duplicate filters (n = 48) collected in NYC. BC determined by 10 wavelength, 2 component model. Duplicate pairs where PM2.5 mass differed by more than 29% were removed.](image)
as \(\ln \left(\frac{R_o}{R} \right) \) since the normal absorbance coefficient incorporates the volume of air filtered. The two measurements initially appear to be linearly correlated up to BC loading of ca. 90 ng/mm²; however, that level, the data are no longer linearly associated. We interpret the curvature to this figure to be due to the decrease in sensitivity of the SSR at high loadings where this instrument has been reported to have saturation issues (Taha et al., 2007). Although the multi-wavelength method will also reach a level of saturation, its gravimetric calibration allows this optical method to continue to be accurate to higher loadings. Although the linear portion of the figure represents almost 95% of the samples, the remaining 5% of the samples represent the highest concentrations, and the high end of the distribution is critically important for defining associations to different health outcomes. For the entire range of the mass loadings of the calibration standards used by the multi-wavelength method (up to 250 ng/mm²), the data are well represented by a 3rd order polynomial \((R^2 = 0.93) \). The four red samples that fall well below the main curve (Fig. 8) had its PM₂.₅ focused in the center of the filter, due to the failure of the cyclone. Both the SSR and multi-wavelength methods are based on the assumption that PM₂.₅ is evenly distributed on the filters; therefore for these four filters, both results are inaccurate. The BGI cyclones can fail to evenly distribute PM₂.₅ across the filter when the barb fitting, which connects the tubing to the cassette that holds the filter, is pushed in too far so that the end of the fitting is too close to the filter thereby concentrating the flow of air into the center of the filter. The model-derived fits which apportion the amount of BC vs. other components show that soot-BC is not the only particulate matter type that impacts the optical reflectance of indoor samples whereas outdoor samples in NYC appear to be predominantly BC (data not shown). This type of information is not available by the SSR method.

BC levels determined using this optical method were compared with EC levels measured by Sunset Inc. using thermo-optical NIOSH method 5040 on filters collected over 2 week periods (CCCEH cohort). The BC air concentrations are similar to but consistently higher than the EC concentrations. One possible explanation for higher values of BC than EC is that the NIOSH method can underestimate EC levels by up to 50% because of the oxidation of elemental carbon at 870 °C in the helium atmosphere at which some minerals decompose (Chow et al., 2001). The correlations \((R^2 = 0.77) \) observed for samples collected during both the heating season and non-heating seasons (Jung et al., 2010a) are reasonably strong for the amount of variation in the two week long samples (<factor of 4), and a similar slope characterizes the correlation between EC and the multi-wavelength optical method in heating and non-heating seasons. One pair of co-located samples

Fig. 7. Aethalometer data averaged and compared to 24 h sampling periods of triplicate PM₂.₅ filters measured by multi-wavelength optical method (10 wavelength, 2 component model).

Fig. 8. Comparison of smoke stain reflectometer SSR results to multi-wavelength BC results determined by the 10 wavelength, two component model. The asterisks indicate that we have modified the SSR method and thus the values will not be the same as others that follow the standard protocol (see text).

Fig. 9. Comparison of EC concentrations made on quartz PM₂.₅ filters to optical BC measurements for co-located Teflon PM₂.₅ filters collected over 2 week periods. One outlier pair was removed from an indoor setting (see text).
that was not plotted in Fig. 9, the quartz filter had a much higher EC concentration of 21 μg/m². This high average level for EC for these two weeks samples would be equivalent to a BC filter loading that is well beyond the range that the multi-wavelength method works; and indeed the apportionment model fit to the optical data for the co-located Teflon filter was very poor suggesting the multi-wavelength method was unable to quantify the amount of BC accurately.

4. Conclusions

The current optical method can distinguish end-member standards of BC, SHS, and iron oxides. For environmental samples, the method has been found to be very sensitive for estimating airborne levels of BC. Validation of the BC levels included comparison to aethalometer measurements ($R^2 = 0.98$) and EC measurements ($R^2 = 0.77$) in both heating and non-heating seasons. Comparison to SSR measurements appeared to be linearly correlated to multi-wavelength BC below a BC loading of 90 ng/mm²; above this value the multi-wavelength BC values are more accurate due to saturation of the SSR method. In addition, the multi-wavelength optical method can estimate concentration of additional components including SHS, hematite and goethite.

Acknowledgements

This research is supported by NIEHS grants (ES016110, ES015905, ES013163 and ES009089). Thanks to Cheng-Chuan Ho for fruitful programming discussion and coding, and to summer interns who have worked on this project, specifically Molly Plotkin and Cristine White. We also thank Phil Lawless for providing extended details of his method and useful discussion of our method and two anonymous reviewers for their useful suggestions and efforts in improving this manuscript. This is LDEO contribution number XXXX.

Appendix. Supplementary material

Supplementary data related to this article can be found online at doi:10.1016/j.atmosenv.2011.01.044.

References

