Biomarkers of polycyclic aromatic hydrocarbon-DNA damage and cigarette smoke exposures in paired maternal and newborn blood samples as a measure of differential susceptibility.

Human and experimental evidence indicates that the developing fetus may be more susceptible than the adult to the effects of certain carcinogens, including some polycyclic aromatic hydrocarbons (PAHs). Factors that can modulate susceptibility include proliferation rates, detoxification capabilities, and DNA repair capacity. Biomarkers can facilitate quantification of age-related susceptibility among human populations. In this study, we report on three biomarkers measured in paired blood samples collected at birth from 160 Polish mothers and newborns: 70 pairs from Krakow (a city with high air pollution including PAHs) and 90 pairs from Limanowa (an area with lower ambient pollution but greater indoor coal use). Biomarkers were: WBC aromatic-DNA adducts by 32P-postlabeling and PAH-DNA adducts by ELISA (as indicators of DNA damage from PAHs and other aromatics) and plasma cotinine (as an internal dosimeter of cigarette smoke). Correlations were assessed by Spearman’s rank test, and differences in biomarker levels were assessed by the Wilcoxon signed-ranks test. A significant correlation between paired newborn/maternal samples was seen for aromatic-DNA adduct levels (r = 0.3; P < 0.001) and plasma cotinine (r = 0.8; P < 0.001) but not PAH-DNA adduct levels (r = 0.14; P = 0.13). Among the total cohort, levels of the three biomarkers were higher in newborn samples compared with paired maternal samples. The difference was significant for aromatic-DNA adduct levels (16.6 ± 12.5 versus 14.21 ± 15.4/108 nucleotides; P = 0.002) and plasma cotinine (14.2 ± 35.5 versus 8.3 ± 24.5 ng/ml; P < 0.001) but not for PAH-DNA adduct levels (7.9 ± 9.9 versus 5.9 ± 8.2/108 nucleotides; P = 0.13). When analyses were restricted to the 80 mother/newborn pairs from whom the blood sample was drawn concurrently (within 1 h of each other), levels of all of the three biomarkers were significantly higher in the newborn compared with paired maternal blood samples (P < 0.05). Results suggest reduced detoxification capabilities and increased susceptibility of the fetus to DNA damage, especially in light of experimental evidence that transplacental exposures to PAHs are 10-fold lower than paired maternal exposures. The results have implications for risk assessment, which currently does not adequately account for sensitive subsets of the population.

Show Buttons
Hide Buttons